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ABSTRACT

A procedure is developed for obtaining maximum-likelihood estimates
of the reflection coefficient sequence fram seismic data. The
reflection coefficient sequence is modeled as an impulsive process,
where the reflection locations are statistically independent and the
reflection amplitudes are uncorrelated and Gaussian distributed. The
wavelet and all other parameters are assumed known. The results of this
procedure are demonstrated for synthetic data.

I. Introduction

The optimal smoother method for estimating reflection coefficients
from seismic reflection signals, as developed by Mendel [1-4], is a
minimum-variance linear estimator which does not take into account the
impulsive nature of the reflection coefficient sequence. Figure 1 shows
the results of using the optimal amoother on a synthetic seismogram; the
circles mark the non-zero reflection coefficients and the bars depict
the corresponding estimates. As one can see, the minimum-variance
estimates are generally non-zero at every time point and tend to under-
shoot the non-zero values of the reflection sequence. Alternatively,
the (unconditional) maximum-likelihood estimator described in this paper
uses the camplete statistical description of the model and produces
estimates with the same statistical characteristics as the process being
estimated. By
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As with the minimum-variance estimator, we model the seismic signal
as a linear convolution of the source wavelet with a reflection process,
corrupted by various recording effects. These recording effects include
the geophone response, aliasing filter, instrument noise, cultural
noise, and can include modeling errors. Further, the signal to be
estimated, namely the plane wave reflection coefficient sequence, is not
the same as the signal to be convolved with the wavelet, namely the
impulse response of the Earth. The difference between these two signals
can be regarded as geological effects, which include spherical
divergence, absorbtion, and multiples. Same of these effects can be
included in our model, which is shown in Figure 2. (Including multiples
would require a non-linear model of very high order, and is generally
not feasible at this point.) Given this model in state vector form, and
the variance of u(k), one can perform optimal smoothing.

Por our maximm-likelihood estimator, we model the Earth as a
series of distinct reflectors, so that the reflection coefficient
sequence will consist of a few isolated impulses. To avoid a lengthy
discussion for conversion from continuous to discrete time, let us
assume that these reflections can only arrive at discrete times. Due to
the difficulty in modeling multiple reflections and transmission
effects, let us simply ignore the additional information available from
these effects. Pinally, we assume that the 1ocat1m (in time) of the
reflections are statistically independent of each other, and that the
magnitudes of these reflections are uncorrelated and Gsussian
distributed.

Pigure 3 depicts a synthetic reflection coefficient sequence
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generated using this model, and Figure 4 depicts the corresponding
seismogram. For this example we have ignored all geological effects and
all recording effects except for corruption by additive white Gaussian
noise. This is not a constraint on the method, but was done simply to
avoid camplications in the presentation. FPigure 4 depicts the signal
from which the estimates in Figure 1 were obW. A

II. The Product Model
To simplify the estimation problem, we have found it convenient to

model the reflection coefficient sequence, u(k), as a product of two
randam processes of the form

; (k) = £(k) q(k) (1)

where r(k) is a white Gaussian process and where g(k) is a binary
process, which can only take on the values 0 or 1. When a reflection
arrives at time k we set g(k)=1, and when no reflection arrives at

time k we set g(k)=0. Therefore the process g(k) is determined entirely
by the locations of the reflections, so that the magnitude information
must be contained in the process r(k).

The statistical distribution of the r(k) is completely described by
L its variance, C, since its mean is zero. The distribution of the q(k)
is given by




A when q(k)=1
Pr{g(k)} = 4 1-A when g(k)=0 (2)
0 otherwvise

where the parameter A can be thought of as the average mmber of
reflections per sample. Using the product model, we intend to find
maximum-1ikelihood estimates for both the q(k) and the r(k), then use
the invariance property of maximum-likelihood estimates to obtain
estimates of the u(k) using

u(k) = £(k) q(k) . (3)

III. miutgg the Reflection &iuﬁes
For the case when the reflection locations are known, so that the

g(k) are given, we can obtain maximum-likelihood estimates of the r(k)
using an optimal smoother by incorporating the g(k) into the state
vector model. This results from r(k) being a purely Gaussian process,
and the maximm-likelihood estimates of a Gaussian process are the same
as the minimm-variance estimates. Figure 5 demonstrates how the g(k)
enter into the convolution model. Pigure 6 shows the resulting
estimates for the case when the reflection locations are known. As one
can see, these estimates are far superior to those obtained without such
a peiori knowledge, which were depicted in Pigure 1.

Another way to estimate the u(k) when the reflection locations are
krown is to incorporate the g(k) into the variance model. _That is,




instead of using the unconditional variance
E{v?(k)} = C (4)

which was used to obtain the minimum-variance estimates, we could use
the time-varying conditional variance

E(w?(K) | q(k)} = C q(k) (5)

and model the u(k) as being the input to the convolution model. This
way the optimal smoother will estimate u(k) directly.

For the case when only the maximum-likelihood estimates &(k) are
known a priori, the maximum-likelihood estimates of the r(k) can be
obtained using an optimal smoother by incorporating the g(k) into the
State vector model, in place of the now unknown q(k) . This can be shown
by factoring the likelihood expression into a term which depends on the
r(k) and a temm which depends of the g(k). The term which depends of
the r(k) will have the form of a conditional Gaussian density function, 1
but where &(k) now appears in place of gq(k). Therefore the problem of 7
estimating the reflection amplitudes has a known closed form solution,
but it requires first estimating the reflection locations.

IV. Estimating the Reflection Locations
In practice the reflection locations are not kmown a priori and
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must be estimated by maximizing the 1ikelihood expression , which is
given by

Lig™ | 2™) = piz™ | g™} prig™) 6)
using the notation

2™ « 1z, 2, ..., zo0)® N

a™ = (q0), q), ..., qe1)I' . @

Given the g(k) , we can express the z(k) as linear cambinations of the
£(k) plus the recording noise, both of which are modeled as Gaussian;
hence, the probability density function p(z™ |g™} is simply a
multivariate Gaussian density function. Since the reflection locations
are statistically independent, the probability distribution of the g(k)
is given by

Peig™) = M priqmn) (9

where Pr(q(k)} was given by equation (2).

We can campute the likelihood for any given set of observations
2™ and estimates g™ efficiently using a Kalman filter by incor-
porating the estimates q(k) into the model, since the likelihood is a




simple function of the resulting innovations process and variance [5].
But while we can campute the likelihood easily, it is impossible to
maximize it with respect to the unknown vector g™ in any . asonsble
amount: of time.

Since there are non-linear interactions between the g(k) in the
likelihood expression, we cannot decouple the maximization with respect
to the individual g(k), but rather must maximize with respect to the
entire sequence. Since the g(k) are discrete valued, maximization will
consist of comparing the likelihoods of different sequences (rather than
setting a gradient to zero). Pinally, since each q(k) can take on two
possible values and since there are M samples in the sequence, there is

a total of 2" possible sequences gm’

for which one must campare the
likelihoods. When M is on the order of several hundred, this would

require several centuries of computer time.

V. Suboptimal Detection of Reflections

While we may not be able to determine the global maximum of the
likel ihood expression, we can always design a method for detecting
significant reflections; that is, we can determine relatively high
likelihood or near maximum likelihood estimates for the g(k). Further,
since we can easily compute the likelihood for a given estimated
ssquence i(l) + we can campare the relative performance of different
detectors. We have found one such detector which performs very well

indeed.




This detector uses an approximation to the likelihood ratio for
g(k) of the form

PR a®* 1) 3 q=1 | &y
A(K) = m— (10)
1t g™ ) 3 qry=0 | 2y

where L{-|} is given by equation (6) and where the k+% length vector
g™**) (k) is defined as

g®*%) (k) = [q(0), Q(1), ..., Q(k=1), Q(K), Ay oeer A]' . (11)

This ratio compares the likelihood for two particular sequences which
differ only in their values for g(k). Further, these likelihoods use
only k+g observations, where 2 is some small integer, rather than using
all M available observations. These sequences are generated by
recursively detecting &(0). é(l), &(u) using

= 1 when A(k)>1

for k=0,1...M-1. The value of q(§) in g¢™**) (k) for j>k is replaced by

the expected value,
E{g(j)} = A . (13)

Figure 7 depicts the estimates which result from this detector




using ¢=5. The reflection amplitudes were estimated by incorporating
the detected &(k) into the state vector model. These estimates are
obviously not as good as those in Figure 6, in spite of the fact that
their likelihood is many times higher. The reason for this is that the
seven missed reflections were not large enough to be likely. Further,
we have determined that this estimated sequence é(M) is more likely than

any of its nearest neighbors.
Because of common terms in the two sequences used in equation (10),

this approximate likelihood ratio can be computed by running two Kalman
filters for only & samples each, so that detecting the entire sequence !
é"" requires about 2¢ times as much computer time as computing its 5
likelihood. While increasing 2 increases the computational burden, it !
also improves the resulting likelihood. But since the marginal "
improvement from increasing 2 drops off rapidly as 2 increases, a
relatively small 2 will generally suffice. Figure 8 demonstrates the
effect of varying 2.

As shown in Figure 9, as the signal-to-noise ratio decreases, the

nunber of missed detections increases.

VI. PFuture Work

A N NI O S L Ao A AN B i

If one is more interested in reducing the number of missed
detections than in maintaining the invariance property, then one might
prefer to obtain Bayesian estimates of the reflection locations. The

T

solution to the Bayesian detection problem consists of comparing the




likelihood ratio to some threshold other than unity [6]. Since our
suboptimal detector camputes an approximate likelihood ratio, one can
easily extend this approach to obtain approximate Bayesian estimates.

One advantage of the maximum-likelihood approach is that it can
handle the case when the source wavelet, or any other model parameter,
is unknown. This is done by obtaining maximum-likelihood estimates for
these unknown parameters, which is a conventional non-linear optimiz-
ation problem. We have shown that this approach can resolve the phase
ambigui ty problem in wavelet extraction. This is the area of our
present interest.

Also this approach can be extended to include any bimodal or
multimodal Gaussian process. For example, the Earth model may include
small reflectors within the layers, so that the reflection coefficient
sequence is actually drawn from two distributions: one for the layer
interfaces and one for the intra-layer structureé. If we model these
magnitude distributions as being Gaussian with differing variances, then
we can represent the reflection coefficient sequence using our product

model by letting g(k) take on two non-zero values.
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VII. Conclusion

By representing the reflection coefficient sequence as a product of
a Gaussian process and a binary process, the estimation problem is
separated into two simpler problems. First, the significant reflections
are detected. Second, the amplitudes are estimated using an optimal
smoother which incorporates the solution to the first problem in the
state vector model.

While it is impossible to definitely determine the reflection
locations which maximize the likelihood in a reasonable amount of time,
we have presented an efficient method for recursively detecting the
significant reflections using an approximation to the likelihood ratio.

This suboptimal detector has performed very well on synthetic data.
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CONVOLUTION MODEL

Seismic

Recording
Source

Effects

—»Z (k)

Geological Source | Recording
pk) 'IEffects —’LWovelet "l Effects >z(k)

#(k) is the desired reflection sequence.
z(k) is the observed data.

Fig. 2. Convolution Model
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ESTIMATING AMPLITUDES GIVEN LOCATIONS

When the q(k) are known, the maximum -likelihood
estimates for the r(k) can be obtained by using an
optimal smoother where the q(k) are included in the
state vector model : /

' | Geological Source Recording
. effects " wavelet 'Ieffects b

We con then estimate u (k) using

£ = Pe) qlK

Pig. 5. Incorporating gq(k) into the Convolution Model
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